Last met borst- en armspieren!

Author
Real rookie
Feather Weight
2013/05/16 20:14:01 (permalink)
0

Last met borst- en armspieren!

Hoi iedereen,

Ik ben nieuw hier en vroeg me af hoe ik men borstspieren eens egt goed moet trainen! Ik heb egter wel geen uitrusting ter beschikking. Wat is een waardig alternatief voor halters? Ook op dit vlak heb ik nog training nodig!
Alvast bedankt! super blij
#1

17 Replies Related Threads

    sis
    NO Sissy !!
    Re:Last met borst- en armspieren! 2013/05/16 21:00:57 (permalink)
    0
    Alles wat je vast kunt pakken, en dat het gewicht van een halter heeft, kun je als halter of dumbbells gebruiken. Ik zou je echter afraden om alleen je borstspieren te trainen. Daar heb je weinig aan, behalve dat je er rug en schouder klachten van kunt krijgen. 
     
    Welkom trouwens.
    #2
    FitnessGladiator
    Feather Weight
    Re:Last met borst- en armspieren! 2014/03/23 17:46:50 (permalink)
    0
    Borst is vaak het leukst om te trainen, vooral omdat die pomp lekker voelt.
    Het is echter wel belangrijk om alle spieren te trainen, ook rug, benen, etc.
     
    Borst kan je ook trainen zonder halters en apparaten.
    Zo heb je de bekende push up voor de hele borst, maar vooral de buitenkant.
    Als je de push up doet met je handen dicht bij elkaar dan train je de binnenkant borst.
    Door een vering of een elastische touw zo ver als mogelijk uit elkaar te trekken en weer los te laten,
    train je de buitenspieren van je borst.
     
    Voor extra oefeningen kan je ook kijken bij:
    fitness4strength.com
    #3
    ErEf
    Growing pains BFF AD
    Re:Last met borst- en armspieren! 2014/03/24 15:39:50 (permalink)
    0
    FitnessGladiator
    Borst is vaak het leukst om te trainen, vooral omdat die pomp lekker voelt.
    Het is echter wel belangrijk om alle spieren te trainen, ook rug, benen, etc.
     
    Borst kan je ook trainen zonder halters en apparaten.
    Zo heb je de bekende push up voor de hele borst, maar vooral de buitenkant.
    Als je de push up doet met je handen dicht bij elkaar dan train je de binnenkant borst.

    smal drukken is voor je schouderspieren voor en je triceps goed
    de binnenkant borst of buitenkant borst kan je niet apart trainen, het is één spier.

    maar inderdaad.. er zijn een variëteit aan opdrukoefeningen als er geen apparaten beschikbaar zijn.
    handen dicht bij elkaar, wijd uit elkaar, gestrekt naar voren, tussen 2 stoelen etc
     
    #4
    FitnessGladiator
    Feather Weight
    Re:Last met borst- en armspieren! 2014/03/25 17:42:53 (permalink)
    0
    Dat kan je zeker wel apart trainen. Ik trainde zelf ook eerst vooral de buitenkant borst waardoor de borst wijder werd maar ik kreeg geen mooie sluiting met de borst tegen elkaar en de dunne spleet.

    Ik had advies gekregen van een professionele bodybuilder in de sportschool na een gesprek en hij heeft mij aangeraden om ook de binnenkant en bovenborst te pakken. Ik heb de oefeningen van hem geleerd. Daarna kreeg ik pas resultaten waar ik naar opzoek was.
    #5
    sis
    NO Sissy !!
    Re:Last met borst- en armspieren! 2014/03/25 18:37:17 (permalink)
    +1 (1)
    Dan heb je door die oefeningen je borstspier in zijn geheel wat groter getraind. De borstspier loopt van je bovenarm naar je borstbeen. Vergelijk hem met een bundel elastiekjes, als je die uitrekt, kun je niet de ene kant harder rekken dan de andere kant. 
     
     

    #6
    ErEf
    Growing pains BFF AD
    Re:Last met borst- en armspieren! 2014/03/25 23:50:54 (permalink)
    0
    Inderdaad. Duidelijk plaatje Sis. Er zijn ook specifieke post over dit onderwerp op dit forum. Het is een veel voorkomende misvatting.
    Bijvoorbeeld bij dumbell curls; kan je dan ook zeggen dat je de biceps aan de kant van de schouder of bij de elleboog meer aandacht kan geven? Dat lukt niet. Dat werkt bij de borst het zelfde.
    #7
    FitnessGladiator
    Feather Weight
    Re:Last met borst- en armspieren! 2014/03/26 01:33:09 (permalink)
    0
    Je geeft nu een compleet ander voorbeeld.

    Het is waar dat de borst 1 spier is, maar juist omdat het een grote spier is kan je wel degelijk de focus leggen op een punt waar je de pomp en bloed meer voelt dan op een ander punt.

    Bijvoorbeeld, je pakt de oefening met de druk op de bovenborst, degene die het hebben uitgevoerd zullen dat begrijpen, dan voel je na die oefening een enorme pomp op de boven gedeelde van je borst, meer als tussen, onder of bij de vleugels.

    Al is het 1 spier, je hebt verschillende oefeningen nodig om de borst tot in de details te trainen en mooi resultaat te zien.
    #8
    sis
    NO Sissy !!
    Re:Last met borst- en armspieren! 2014/03/26 11:34:03 (permalink)
    0
    Euh.. binnenkant/buitenkant was het toch, ik geef geen ander voorbeeld, ik laat je zien waarom je die niet kunt isoleren. Onder/boven is een ander verhaal. Daar kun je wel wat invloed op uitoefenen. 
     
    Met "vleugels" wordt meestal de latissimus dorsi bedoeld, de brede rugspier. Als je die voelt dan heb je een rugoefening gedaan. Maar wellicht bedoel je dat niet met je opmerking "voelen bij de vleugels".  
     
     

     
     
    #9
    FitnessGladiator
    Feather Weight
    Re:Last met borst- en armspieren! 2014/03/26 12:54:58 (permalink)
    0
    Ik bedoelde de zijkant, ik denk dat je het wist wat ik bedoelde, maar je had zin om sarcastisch of grappig te zijn.

    Zoals het voor jou met de onderkant en bovenkant een heel ander verhaal is terwijl we het over 1 spier hebben... Zo geldt dat voor de zijkant en midden ook. Door beide oefeningen uit te voeren krijg je een volle volume aan beide kanten.

    Als ik niet beter wist had ik misschien je advies gevolgd met de spier afbeeldingen. Ik had zelf een volle volume aan de zijkant en in de midden was het plat en was de sluiting van de borst niet te zien. Na het advies en de variatie van de oefeningen kwam er volume in heel de borstkast en is de borst sluiting zeer goed te zien, in 4 maanden tijd.
    #10
    sis
    NO Sissy !!
    Re:Last met borst- en armspieren! 2014/03/26 16:33:31 (permalink)
    0
    Nee hoor, het is niet mijn bedoeling om sarcastisch of grappig te zijn. Ik begreep niet precies wat je bedoelde met vleugels. Ik heb geen advies gegeven in mijn eerdere post, maar het isoleren van de aanhechting op je borstbeen en de aanhechting op je bovenarm is gewoon fysiologisch onzin. En volgens mij had jij het echt daar over: 
     
    "Zo heb je de bekende push up voor de hele borst, maar vooral de buitenkant.
    Als je de push up doet met je handen dicht bij elkaar dan train je de binnenkant borst."
     
    Zo groot is het verschil met boven en onder trouwens ook weer niet, het blijft een relatief kleine (vlakke) spier. Maar ik snap natuurlijk dat je die ook op volume wilt trainen, niks mis mee. Ik blijf erbij dat je resultaat hebt geboekt door verschillende oefeningen, zoals presses en flyes, en daardoor toont de borst in zijn geheel forser. Als je voor die tijd bijvoorbeeld alleen maar aan bankdrukken deed, dan kan ik me indenken dat die belasting te éénzijdig is voor groei (afhankelijk van de intensiteit van de uitvoering). 
    #11
    FitnessGladiator
    Feather Weight
    Re:Last met borst- en armspieren! 2014/03/26 17:45:48 (permalink)
    0
    Misschien begrijpen we elkaar verkeerd of hebben we een ander visie.
     
    Ik heb nooit aangegeven dat de borst bestaat uit meer dan 1 spier. Wel heb ik verteld dat er verschillende oefeningen zijn voor de borst waarbij de druk vooral op een specifieke punt het meest wordt gevoeld. Ook door af te wisselen groeit de borstspier en krijgt het een beter vorm.
     
    Ik heb ook veel dingen gelezen bij verschillende mensen en zie dat er vele verschillende meningen zijn. Ik persoonlijk geloof in resultaat. Als iemand resultaten boekt zal ik daar eerder naar gaan luisteren dan een ander die het blijkt te weten, maar het niet zichtbaar is. Na het toepassen van de verschillende borst-oefeningen (waaronder die ik heb uitgelegd met de handen dicht bij elkaar of de halterstang drukken met de handen dicht bij elkaar) begon ik mooie resultaten te zien en kwam er naast de vorm alleen, ook massa bij.
     
    Maar wat betreft dit onderwerp zal ik het hierbij laten, omdat ik het gevoel heb dat we met deze discussie er samen niet veel mee zullen opschieten. Ik blijf in ieder geval een voorstander van dat iedereen het geen moet volgen wat voor hem of haar het beste werkt, want uiteindelijk gaat het om de resultaat.
    #12
    sis
    NO Sissy !!
    Re:Last met borst- en armspieren! 2014/03/26 17:51:19 (permalink)
    0
    Zijn we het over dat laatste in ieder geval toch eens  
    #13
    ErEf
    Growing pains BFF AD
    Re:Last met borst- en armspieren! 2014/03/27 08:26:06 (permalink)
    0
    FitnessGladiator
    Ik heb nooit aangegeven dat de borst bestaat uit meer dan 1 spier. Wel heb ik verteld dat er verschillende oefeningen zijn voor de borst waarbij de druk vooral op een specifieke punt het meest wordt gevoeld. Ook door af te wisselen groeit de borstspier en krijgt het een beter vorm.

    Je hebt specifiek gezegd dat je met smal drukken meer nadruk legt op de binnenkant van de borstspier.
    Dat is waar dit over gaat. We hebben het nu niet over decline of incline presses, waarbij je inderdaad de nadruk kan leggen op bovenkant of onderkant borstspier.
     
    FitnessGladiatorIk heb ook veel dingen gelezen bij verschillende mensen en zie dat er vele verschillende meningen zijn. Ik persoonlijk geloof in resultaat. Als iemand resultaten boekt zal ik daar eerder naar gaan luisteren dan een ander die het blijkt te weten, maar het niet zichtbaar is.
    over sarcasme gesproken
    maar om je even uit de droom te helpen met zichtbaar of niet zichtbaar..
    er zijn genoeg massieve bodybuilders krachtsporters die op basis van anatomische kennis ervaring en resultaat je mening niet delen.
     
    cable crossovers helpen je wel om de gehele bewegingsbaan spanning te houden op je borstspier, nog meer dan met small presses.
     
    #14
    Harold
    Amor omnia vincit BFF USER MANAGER
    Re:Last met borst- en armspieren! 2014/03/28 10:36:56 (permalink)
    +1 (1)
    Een niet getrainde borstspier heeft op bepaalde plekken al meer volume dan op andere plekken en zou het dan niet logisch zijn dat juist die plekken die van zich zelf al iets groter zijn, dus dat deel van de borst wat beter zichtbaar is al sneller resultaat laat zien dan de delen van de borst die minder ontwikkeld zijn voor het oog dan.
     
    Dus als je de hele borstspier traint met welke oefening dan ook zal dat deel wat al meer volume had nog meer volume krijgen versus de rest en dan gaan de meeste bodybuilders in eens roepen dat een deel van de borst achterblijft en bedenken dan zomaar dingen die niet kunnen in EEN spier, maar zien in eens wel progressie in dat deel van de spier wat sowieso al iets minder ontwikkeld was, maar vergeten te kijken naar de rest van de borst, ik geef jou op een briefje dat als een stukje van de borst dat vermeend achter gebleven  is gegroeid dat de rest van de borst ook is gegroeid en daarom vind ik in elk geval dat je bij veel bodybuilders over ontwikkelde borstspieren ziet versus de rest en veel schouderklachten/ blessures omdat duwen/ drukken nou eenmaal duwen/ drukken blijft en dus de schouders lekker mee blijven doen.
     
    Kortom binnenkant/ buitenkant borst trainen, het kan in mijn ogen niet en pas als 3 zegt dat het kan dan geloof ik het en sluit ik mij verder aan bij Sis en Eref aan.
    #15
    3XL
    Senior Moderator
    Re:Last met borst- en armspieren! 2014/03/30 15:35:24 (permalink)
    +1 (1)
    Door de aanhechting lokatie Plaatje van Sis) kan je je het accent verplaatsen van onder naar boven (coastale aanhechtingen is onderkant, sterno-coastaal is midden, claviculair is bovenkant) maar accent verplaatsing naar of insertie gaat niet!
     
    Maw je kan binnenkant/buitenkant niet accentueren dmv van bepaalde oefeningen. De borst wordt gewoon groter waardoor bepaalde delen meer ingevuld raken.
    #16
    3XL
    Senior Moderator
    Re:Last met borst- en armspieren! 2014/03/30 15:51:51 (permalink)
    +1 (1)
    FitnessGladiator
    Zo heb je de bekende push up voor de hele borst, maar vooral de buitenkant.
    Als je de push up doet met je handen dicht bij elkaar dan train je de binnenkant borst.



     
    Dat binnenkant/buitenkant niet te accentueren valt is al naar voren gekomen en smal is gewoon beter voor de gehele borst
     
    doi: 10.1519/15094.1
    The Journal of Strength and Conditioning Research: Vol.
    19, No. 3, pp. 628–633.

    Comparison of Muscle Activation Using Various
    Hand Positions During the Push-Up Exercise


    Robert M. Cogley, Teasha
    A. Archambault, Jon F. Fibeger, Mandy M. Koverman, James W. Youdas, and John H.
    Hollman
    Program in Physical Therapy, Mayo Clinic College of Medicine,
    Rochester, Minnesota 55905

    ABSTRACT
    Cogley, R.M., T.A.
    Archambault, J.F. Fibeger, M.M. Koverman, J.W. Youdas, and J.H. Hollman.
    Comparison of muscle activation using various hand positions during the push-up
    exercise. J. Strength Cond. Res. 19(3):628–633. 2005.—Popular fitness literature
    suggests that varied hand placements during push-ups may isolate different
    muscles. Scientific literature, however, offers scant evidence that varied hand
    placements elicit different muscle responses. This study examined whether
    different levels of electromyographic (EMG) activity in the pectoralis major and
    triceps brachii muscles are required to perform push-ups from each of 3
    different hand positions: shoulder width base, wide base, and narrow base hand
    placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each
    push-up. The EMG activity for subjects' dominant arm pectoralis major and
    triceps brachii was recorded using surface electrodes. The EMG activity was
    greater in both muscle groups during push-ups performed from the narrow base
    hand position compared with the wide base position (p < 0.05).

    This
    study suggests that, if a goal is to induce greater muscle activation during
    exercise, then push-ups should be performed with hands in a narrow base position
    compared with a wide base position.


    Introduction
    The
    standard push-up can be used either in the assessment of muscle performance or
    as an exercise to increase chest, shoulder, and arm strength. The push-up
    maneuver requires a combined movement of horizontal adduction across the
    shoulder and extension at the elbow. As a form of exercise, therefore, its
    primary purpose is to develop increased strength in the pectoralis major and
    triceps brachii muscles. As a tool for assessing muscle performance, the push-up
    is incorporated in a battery of tests designed to assess individuals' fitness
    levels, such as in the Army Physical Fitness Test (12). Performance on the
    push-up therefore measures strength and endurance of several upper-extremity and
    trunk muscles. Whether used as an assessment tool or a strengthening exercise,
    it is important to understand activation patterns of the muscles that perform
    the movement so that maximal benefits can be realized.

    Popular fitness
    literature has asserted that performing push-ups from different hand positions
    may better isolate either the pectoralis major or the triceps brachii. For
    example, Weede and Kraemer (22) and others (11, 17, 21) suggest that performing
    push-ups from a narrow base (NB) hand position will better isolate the triceps
    brachii. Geiger (5) suggests that widening one's grip during a bench press, a
    movement similar to that required of a push-up, will reduce triceps involvement
    and therefore produce more isolated work of the pectoralis major. Other sources
    advocate the wide base (WB) push-up for isolating the pectoralis major as well
    (7, 11). Little scientific evidence, however, can support these claims.
    Nevertheless, the validity of these sources may have implications regarding the
    performance of exercises aimed at recruiting specific muscle groups.

    Many
    studies have examined muscle activation responses in a variety of shoulder
    strengthening programs (1, 13, 16, 18–20). For example, Signorile et al. (18)
    compared muscle activation patterns during the lateral pull-down exercise
    performed from varying hand placement positions. They reported that changes in
    handgrip position affect electromyographic (EMG) activation levels in certain
    muscle groups. Most notably, more EMG activity occurs in the latissimus dorsi
    muscle when the lateral pull-down is performed from a wide grip position.
    Anderson et al. (1) examined muscle activation patterns during seated push-ups
    but did not examine the muscle recruitment response of the standard push-up
    exercise.

    Donkers et al. (4) examined mechanical demands at the elbow
    during standard push-ups performed from the shoulder width (SW), WB, and NB hand
    positions. They found that the flexion torque at the elbow during push-ups is
    greatest when the exercise is performed from a NB, hands-together position. The
    study did not examine force requirements at the shoulder or muscle activation
    patterns. Nevertheless, the study points out that biomechanical and kinesiologic
    differences may occur during push-ups performed from the SW, WB, and NB hand
    positions. Few controlled studies have used kinesiologic methods to examine the
    demands of the standard push-up exercise. No study, to our knowledge, has
    examined the effect of hand position on muscle recruitment during the exercise,
    specifically recruitment in the pectoralis major and triceps brachii muscles.
    Therefore, the claims in popular literature (5, 7, 11, 17, 22) that hand
    position changes may elicit different muscular recruitment responses appear to
    be unsubstantiated empirically.

    The purpose of this study was to examine
    muscle activation of the pectoralis major and triceps brachii muscle groups
    during push-ups performed from each of 3 selected hand positions: SW base, WB,
    and NB. Based on the suggestions of Weede and Kraemer (22) and Geiger (5) and
    the empiric evidence of Donkers et al. (4), we hypothesize that greater muscle
    activation will be elicited in the triceps brachii from the NB hand position and
    in the pectoralis major from the WB hand
    position.

    Methods

    Experimental Approach to the
    Problem

    Performing push-ups with the hands in a SW base position is the
    typical position from which the exercise is performed. Two variations of the
    common push-up include performing the exercise from a WB hand position and
    performing the exercise from a NB hand position (6, 7, 11, 17, 21). In this
    study we examined which hand position elicited the greatest EMG response from
    the pectoralis major and triceps brachii muscles. The EMG signals were collected
    with surface electrodes, processed with the root mean square algorithm, and
    normalized to a maximal voluntary isometric contraction.

    We used a
    within-subjects, repeated-measures design to test the null hypothesis that EMG
    activation in the pectoralis major and triceps brachii muscles is equivalent
    when push-ups are performed from each of the 3 hand placement positions. Testing
    order was randomized to reduce potential order threats to the study's internal
    validity. These procedures were designed to assess the muscle activation
    required of the pectoralis major and triceps brachii to perform push-ups from
    each of 3 hand positions. Specifically, the study design attempts to answer the
    following research question: “Does the magnitude of pectoralis major and triceps
    brachii EMG activation required to perform a push-up differ within individuals
    across SW, WB, and NB hand positions?”

    Subjects
    Forty healthy
    volunteers between the ages of 22 and 39 years, 11 men (mean * SD age, 24.3 *
    6.4 years; mean * SD height, 180.3 * 7.9 cm; and mean * SD body mass, 88.0 *
    16.6 kg) and 29 women (mean * SD age, 24.3 * 15.8 years; mean * SD height, 166.6
    * 7.7 cm; and mean * SD body mass, 61.4 * 7.1 kg), participated in this study.
    Subjects were recruited from the faculty and student populations through
    postings at the Mayo School of Health Sciences in Rochester, MN. Subjects
    reported an average of 1–5 hours of recreational activity per week, and greater
    than half were involved in strength training programs, which included triceps
    brachii and pectoralis major exercises. Subjects who had a history of shoulder,
    elbow, or wrist injury were excluded from this study. The study procedures were
    approved by the Mayo Institutional Review Board, Mayo Clinic, Rochester, MN. All
    subjects read and signed an approved informed consent form before their
    participation in the study.

    Instrumentation
    Raw EMG signals
    were collected with D-100 bipolar surface electrodes (Therapeutics Unlimited,
    Inc., Iowa City, IA). The active Ag-AgCl electrodes had an interelectrode
    distance of 22 mm and were cased within preamplifier assemblies that measured 35
    × 17 × 10 mm. The preamplifiers had a gain of 35. Electrode leads from the
    preamplifiers were connected to a main amplifier system GCS 67 (Therapeutics
    Unlimited, Inc.). The combined preamplifier and main amplifier permitted a gain
    of 100– 10,000 with a bandwidth of 40 Hz to 6 kHz. The common mode rejection
    ratio was 87 dB at 60 Hz, and input impedance was greater than 15 MO at 100 Hz.
    Data were collected at a sampling frequency of 1,000 Hz. Raw EMG signals were
    processed with WinDaq data acquisition software (DATAQ Instruments, Inc., Akron,
    OH).

    Procedure
    Each subject's skin was prepared by vigorously
    rubbing the electrode attachment site area with an alcohol wipe. After preparing
    the subject's skin, the electrode preamplifier assemblies were attached with
    double-sided, padded adhesive tape. The tape had wells that were aligned with
    the electrodes, in which conductive gel (Signa Crème electrode cream; Parker
    Laboratories, Fairfield, NJ) was used to conduct the myoelectric signal to the
    electrode. The electrodes were placed parallel to the line of action of the
    triceps brachii and pectoralis major muscles on each subject's dominant arm. The
    triceps brachii electrode was placed at the midpoint between the posterior
    aspect of the acromion and the olecranon process. The pectoralis major electrode
    was placed at a point one third of the distance between the anterior aspect of
    the acromion and the xiphoid process. The ground electrode was placed over the
    wrist flexor muscle group of the subject's forearm.

    Once the electrodes
    were applied, maximal voluntary isometric contractions (MVIC) were obtained
    using traditional manual muscle test techniques described by Hislop and
    Montgomery (8). Subjects performed one 5-second isometric contraction against
    manual resistance provided by a researcher. The subject was asked to perform
    each manual muscle test with maximal effort.

    Each subject randomly drew
    the order of push-up performance to reduce threats to the study's internal
    validity. All push-ups were performed with the subject's forearms pronated,
    wrists and fingers extended, and palms on the floor. The SW hand position was
    determined by hanging a plumb line along the edge of the deltoid muscle with the
    subject in a prone position. The subject's third digit was placed where the
    weight of the plumb line was positioned (Figure 1A ). The WB push-up was
    performed with the hands placed 20 cm laterally from the SW position (Figure 1B
    ). In the NB hand position, subjects were instructed to place their hands
    together in the shape of a diamond directly under the center of the sternum
    (Figure 1C ). Subjects were instructed to perform the designated push-up
    starting from the floor and rising in a 3-second cadence. The standard cadence
    minimized influence of varying velocities of contraction on muscle performance
    (6). Subjects were each given a single practice trial to become familiar with
    the mechanical demands of the desired movement. Subjects were allowed a 2- to
    3-minute rest period between tests to minimize potential effects of fatigue.
    Following completion of the testing, the electrodes were removed and skin wiped
    clean.

    Data Processing
    The EMG signals were processed with the
    root mean square algorithm at a time constant of 55 milliseconds. The EMG
    signals recorded during the test conditions were normalized to the muscles'
    respective peak activity levels in the MVIC trials and therefore were expressed
    as a percentage of MVIC. We analyzed specifically the half-second mean
    surrounding the peak normalized EMG activity level during the concentric phase
    of the push-up.

    Statistical Analyses
    Data were analyzed with
    mixed-model analyses of variance (ANOVA), having 1 between-subjects factor (sex)
    and 1 repeated measure (hand position) to examine differences in normalized EMG
    activity between men and women and among the 3 hand positions. Two mixed-model
    ANOVAs were conducted, one test for each muscle. Keppel's (10) modified
    Bonferroni-adjusted post hoc comparisons were used to determine which hand
    positions differed. Statistical significance was established at p 0.05 for all
    tests. Statistical procedures were performed with the SPSS 10.0 for Windows
    (SPSS Inc., Chicago, IL) statistical package.

    Results
    Although
    the women tended to perform the push-ups with greater magnitudes of EMG
    activation than the men (Table 1 ), greater variability occurred among the
    women, particularly in the triceps brachii, and the apparent differences in
    activation between men and women were not statistically significant (pectoralis
    major F1,38 = 3.536, p = 0.068, and triceps brachii F1,38 = 1.942, p = 0.172).
    In light of the nonsignificant differences between men and women, the remaining
    results are presented across sexes.

    Sample EMG plots from a
    representative subject are presented in Figures 2 and 3 for the pectoralis major
    and triceps brachii, respectively. In the triceps brachii, mean * SE normalized
    EMG activity was 101.3 * 13.5% MVIC in the SW hand position, 98.7 * 15.4% MVIC
    in the WB hand position, and 109.1 * 14.1% MVIC in the NB position (Figure 4 ).
    The effect of hand position was significant (F2,78 = 3.417, p = 0.038). The EMG
    activity was significantly greater in the NB hand position than in the WB hand
    position (mean difference = 10.4% MVIC, p = 0.026). Differences between the SW
    and WB hand positions and the SW and NB hand positions were not statistically
    significant (p = 0.490 and p = 0.072, respectively).

    Similar results were
    noted in the pectoralis major muscle. Mean normalized EMG activity was 94.4 *
    8.4% MVIC in the SW hand position, 83.1 * 6.9% MVIC in the WB hand position, and
    100.8 * 7.8% MVIC in the NB hand position (Figure 4 ). The effect of hand
    position was statistically significant (F2,78 = 4.990, p = 0.009).


    Pectoralis major EMG activity was significantly greater in the NB hand
    position than in the WB hand position (mean difference = 17.7% MVIC, p = 0.005).
    Differences between the SW and WB hand positions and the SW and NB hand
    positions were not statistically significant (p = 0.077 and p = 0.195,
    respectively).

    Discussion
    In this study, we examined the EMG
    activity in the pectoralis major and triceps brachii required to perform a
    push-up. The pectoralis major is generally acknowledged to be a horizontal
    adductor of the humerus, although it also assists in adducting the humerus from
    an abducted position and medially rotating the humerus (15). Acting alone, the
    clavicular head of the pectoralis major can flex the humerus and the
    sternocostal head can extend the humerus from a flexed position.

    The
    triceps brachii is generally acknowledged to be an extensor of the forearm
    across the elbow joint (15), although the long head of the triceps brachii also
    extends the humerus across the glenohumeral joint.

    Since the push-up
    maneuver requires a combined movement of horizontal adduction across the
    shoulder and extension at the elbow, its primary purpose is to develop increased
    strength in the pectoralis major and triceps brachii muscles. It is generally
    thought that the specific movement that elicits the greatest activity from a
    muscle during an exercise will most efficiently produce a strengthening effect.
    Various sources in popular fitness literature (6, 7, 11, 17, 21, 22) suggest
    that different hand positions during performance of the push-up can better
    isolate either the pectoralis major or the triceps brachii, although the claims
    are unsubstantiated in scientific literature. We therefore set out to examine
    the claims with EMG analysis.

    Interpreting the results of this study
    requires that the reader comprehend an elementary knowledge of muscle mechanics
    and the relationship to EMG activity. Briefly, surface EMG monitors the motor
    unit recruitment of muscle. Myoelectric activity from a “window” of muscle
    fibers under the active electrodes is measured as the muscle fibers contract. As
    tension demand increases within a muscle, more motor units are recruited and
    therefore EMG levels increase. Since EMG provides insight into muscle activity,
    it can be a good tool for determining the movements or positions that place
    higher demand on a muscle's performance capability. The EMG activity levels,
    however, can be influenced by numerous factors, and therefore one's
    interpretation of EMG studies can be difficult. For example, for any given
    external loading condition on a muscle, EMG amplitudes will be greater for a
    concentric contraction than an eccentric contraction (2).

    To control for
    the contraction-related influence on EMG activity, we therefore analyzed only
    the concentric phase of the push-up in this study. Similarly, contraction
    velocity during concentric contractions also affects the tension that is
    developed within a muscle, such that less tension is developed at higher
    contraction velocities and greater tension is developed at lower contraction
    velocities. The EMG changes reflect those differences inversely. For a given
    external loading condition, EMG amplitude will be greater for a high-velocity
    contraction than a low-velocity contraction, reflecting the motor unit
    requirements for completing a movement at the various velocities (2). Therefore,
    we attempted to minimize this effect by standardizing the cadence over which the
    subjects in this study performed their push-up movements. Numerous other factors
    can influence EMG amplitude but are beyond the scope of this
    article.

    Results of the study reveal that push-ups performed from the NB
    hand position elicit the greatest EMG activity in both the pectoralis major and
    triceps brachii muscles. The difference between the NB and WB hand positions was
    statistically significant in both muscles. These data suggest that push-ups
    performed from the NB hand position recruit more motor units and therefore
    require more contractile demand from the pectoralis major and triceps brachii
    muscles than push-ups performed from the WB hand position. Push-ups performed
    from the NB hand position may therefore be more efficient as a strengthening
    exercise for both muscle groups than are push-ups performed from the WB
    position.

    The results, particularly for the triceps brachii, seem to be
    consistent with other literature. In popular fitness literature, Weede and
    Kraemer (22) suggest that push-ups performed from the NB position better isolate
    the triceps brachii. Our results support that claim. Additionally, in an
    empirical study of push-up mechanics, Donkers et al. (4) report that the peak
    external flexion torque across the elbow is greatest when push-ups are performed
    from the NB hand position. The flexion torques across the elbow are 71% of the
    maximal isometric torque in the NB hand position, 56% of the maximal torque in
    the SW hand position, and 29% of the maximal torque in the WB position. Most of
    the internal moment required during a push-up to overcome the external flexion
    torque is generated by the triceps brachii contraction. The EMG results from our
    study, indicating that triceps brachii muscle activity is highest in the NB hand
    position, are consistent with the results of Donkers et al. (4).

    On the
    other hand, our results contrast with the apparent recommendation of Geiger (5)
    that if one wishes to better isolate the pectoralis major demand during
    push-ups, the WB hand position should be used. The results also contradict our
    hypothesis that EMG activity would have its greatest amplitude in the pectoralis
    major during push-ups performed from the WB hand position. Pectoralis major EMG
    activity was significantly greater in the NB hand position than in the WB hand
    position. This finding may be a function of the range of motion through which
    humeral adduction occurs during the push-up maneuver. Although we did not
    examine the range of joint motion required to perform the push-ups from the
    various hand positions in this study, it is apparent that the push-ups are
    performed in different ranges of shoulder horizontal abduction and adduction
    range of motion.

    In the WB hand position, the arms are in a relatively
    horizontally abducted position, even at the termination of the push-up movement.
    In contrast, in the NB hand position, the arms are in a neutral to slightly
    horizontally adducted position at the termination of the movement, meaning the
    pectoralis major is in a shorter position throughout the push-up. The
    length-tension relationship of muscle mechanics suggests that muscles generate
    less tension at shorter muscle lengths than at longer muscle lengths. Therefore,
    for a given loading condition, a muscle in a shortened position must recruit a
    greater number of motor units to develop the tension necessary to meet the
    loading condition. We believe the EMG results of our study reflect this issue of
    muscle mechanics. The relatively shortened muscle length of the pectoralis major
    in the NB hand position requires greater motor unit activation.

    The
    primary limitation of this study is the assumption that greater EMG activation
    is desired to improve the efficiency of muscle strengthening during exercise.
    The reader must understand that EMG, however, is not a direct reflection of the
    force produced by a muscle. It merely provides insight into the motor unit
    activity necessary to perform the movement and the number of motor units
    represented beneath the active electrodes. Nevertheless, the results provide
    empirical evidence that push-ups performed from different hand positions elicit
    different amplitudes of EMG activation. Additionally, other than hand position
    and cadence, we did little to standardize the performance of the push-ups among
    individual subjects. For example, we did not test subjects' maximum performance
    capability.

    The load used to measure muscle activation responses in
    other studies, such as that of Signorile et al. (18), was normalized to a
    percentage of each subject's 10-repetition maximum. One advantage of using a
    normalized loading condition is that it allows an investigator to compare EMG
    activity levels among individuals from equivalent loading conditions. The fact
    that we neither tested subjects' maximum performance capability nor used a
    normalized loading condition likely had an influence on the sex comparison in
    the present study. Nevertheless, the primary purpose of the present study was to
    examine EMG activation responses within individuals. The within-subjects
    analysis would not have benefited from either a normalized loading condition or
    knowing subjects' maximum performance capability. Another potential limitation
    of the study is that each subject was only instructed to perform the push-up to
    the best of his or her ability regardless of change in posture. While most
    subjects were able to perform each push-up with a rigid spinal posture, some
    were unable to maintain the correct posture throughout the push-up. We are
    unsure whether a subject's change in posture during push-up performance affected
    muscle recruitment.

    As long as push-ups continue to be advocated as a
    strengthening exercise for the pectoralis major and triceps brachii, we believe
    that several remaining questions should be addressed empirically. For example,
    our hypothesis that the pectoralis major would be activated at a higher
    amplitude in the WB hand position came from suggestions in popular literature
    that a wide hand position be used during the bench press to better isolate the
    muscle (5). It is not clear, however, whether the bench press and push-up are
    equivalent exercises from a biomechanical standpoint. Studies by Mayhew et al.
    (14) and Invergo et al. (9), in fact, show that push-up performance is only
    moderately predictive of performance in the bench press. In contrast, Blackard
    et al. (3) analyzed EMG activation in the pectoralis major and triceps brachii
    during equivalently loaded push-ups and bench presses and reported that EMG
    activity did not significantly differ between the
    exercises.

    Nevertheless, they did not examine EMG responses from
    different hand placements, and one would have to be careful about extrapolating
    the results we obtained with push-ups to the bench press exercise. An additional
    question is whether hand placement position may affect performance on the
    push-up. An interpretation of our results is that the increased EMG activation
    observed in push-ups performed from the NB hand position is a response to
    greater contractile demands on the muscle. One might extrapolate this to mean
    that performance, e.g., maximal number of repetitions, would be reduced in the
    NB hand position compared with the WB hand position. We did not examine whether
    performance differs, but the question merits investigation.

    Practical
    Applications

    The primary purpose of the push-up as a strengthening
    exercise is to develop increased strength in the pectoralis major and triceps
    brachii muscle groups. Therefore, it is important to understand which hand
    position elicits greatest activity from these muscles during the exercise.
    Results of our study indicate that most EMG activity is elicited when push-ups
    are performed from a NB hand position. If an individual uses the push-up as a
    form of upper-extremity exercise to strengthen the pectoralis major and triceps
    brachii, we recommend using the NB hand position.

    References
    1.
    Anderson, D.S., M.F. Jackson, D.S. Kropf, and G.L. Soderberg. Electromyographic
    analysis of selected muscles during sitting push-ups: Effects of position and
    sex. Phys. Ther. 64:24–28. 1984.

    2. Bigland, B., and O.C. Lippold. The
    relation between force, velocity and integrated electrical activity in human
    muscles. J. Physiol. 123:214–224. 1954.

    3. Blackard, D.O., R.L. Jensen,
    and W.P. Ebben. Use of EMG analysis in challenging kinetic chain terminology.
    Med. Sci. Sports Exerc. 31:443–448. 1999.

    4. Donkers, M.J., K.N. An,
    E.Y. Chao, and B.F. Morrey. Hand position affects elbow joint load during
    push-up exercise. J. Biomech. 26:625–632. 1993.

    5. Geiger, B. Training
    notebook: Angle play. Muscle Fitness. January:46–48. 2004.

    6. Halem, D.
    Pump up with push-ups: Train your pecs at home with 9 variations of this classic
    movement. Muscle Fitness. 63:116–120;129. 2002.

    7. Hendel, A.P. Living
    better with the “push-up.”. Available at: www.bodyjam.com/pushup/php3. Accessed May 10, 2004.


    8. Hislop, H.J., and J. Montgomery. Daniels and Worthingham's Muscle
    Testing: Techniques of Manual Examination(7th ed). Philadelphia: W.B. Saunders
    Company, 2002.

    9. Invergo, J.J., T.E. Ball, and M. Looney. Relationship
    of push-ups and absolute muscular endurance to bench press strength. J. Appl.
    Sport Sci. Res. 5:121–125. 1991.

    10. Keppel, G. Design and Analysis: A
    Researcher's Handbook (3rd ed). England Cliffs, NJ: Prentice Hall, 1991.


    11. Khazei, D. Push-up power: Five variations on this classic exercise.
    Men's Fitness. 10:56–57. 1994.

    12. Knapik, J.J., M.A. Sharp, M.
    Canham-Chervak, K. Hauret, J.F. Patton, and B.H. Jones. Risk factors for
    training-related injuries among men and women in basic combat training. Med.
    Sci. Sports Exerc. 33:946–954. 2001.

    13. Lear, L.J., and M.T. Gross. An
    electromyographical analysis of the scapular stabilizing synergists during a
    push-up progression. J. Orthop. Sports Phys. Ther. 28:146–57. 1998.

    14.
    Mayhew, J.L., T.E. Ball, M.D. Arnold, and J.C. Bowen. Push-ups as a measure of
    upper body strength. J. Appl. Sport Sci. Res. 5:16–21. 1991.

    15. Moore,
    K.L. Clinically Oriented Anatomy (3rd ed). Baltimore: Williams & Wilkins,
    1992.

    16. Moseley, J.B. Jr., F.W. Jobe, M. Pink, J. Perry, and J.
    Tibone. EMG analysis of the scapular muscles during a shoulder rehabilitation
    program. Am. J. Sports Med. 20:128–134. 1992.

    17. Schuler, L. Push
    League. Available at: http://www.menshealth.com/cda/articl...-0-596,00.html.
    Accessed May 10, 2004.

    18. Signorile, J.F., A.J. Zink, and S.P. Szwed. A
    comparative electromyographical investigation of muscle utilization patterns
    using various hand positions during the lat pull-down. J. Strength Cond. Res.
    16:539–546. 2002.

    19. Townsend, H., F.W. Jobe, M. Pink, and J. Perry.
    Electromyographic analysis of the glenohumeral muscles during a baseball
    rehabilitation program. Am. J. Sports Med. 19:264–272. 1991.

    20. Uhl,
    T.L., T.J. Carver, C.G. Mattacola, S.D. Mair, and A.J. Nitz. Shoulder
    musculature activation during upper extremity weight-bearing exercise. J.
    Orthop. Sports Phys. Ther. 33:109–17. 2003.

    21. Voight, K. The right
    moves: Building pecs: The do's and don'ts of a perfectly proper push-up. Los
    Angeles Times Health S8. 2000.

    22. Weede, T., and W.J. Kraemer. Muscle
    and fitness blueprint for arms. Muscle Fitness Insert. 2002.

    Address
    correspondence to Dr. John H. Hollman, E-mail: hollman.john@mayo.edu



    #17
    Marathonman
    Heavy Weight
    Re:Last met borst- en armspieren! 2014/04/04 02:36:51 (permalink)
    0
    Dus je wil in de zomer op het strand gaan patsen?
     
    #18
    Jump to:
    © 2020 APG vNext Commercial Version 5.0